Data Driven Mathematical Modeling

Rodney X. Sturdivant and Robert E. Burks

JMM 2020
The “Data Insights” Problem (MCM Problem C)

<table>
<thead>
<tr>
<th>Problem C Overview</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Started in 2016</td>
<td>• 2016 “The Goodgrant Challenge”</td>
</tr>
<tr>
<td>• “Amplify” modeling challenges associated with data</td>
<td>• 2017 “Cooperate and Navigate”</td>
</tr>
<tr>
<td>• Not necessarily “big data”</td>
<td>• 2018 “Energy Production”</td>
</tr>
<tr>
<td>• Complicating factors</td>
<td>• 2019 “The Opioid Crisis”</td>
</tr>
<tr>
<td>• Size, data types, missing etc.</td>
<td></td>
</tr>
<tr>
<td>• Includes data files</td>
<td></td>
</tr>
</tbody>
</table>
2016 “The Goodgrant Challenge”
• $100 million grant money
• Donate to a group of schools over 5 years
• Optimal allocation to improve “ROI”
 • Goal: student performance improvement
• Produce a prioritized list of schools for each year

DATA
• U.S. National Center on Education Statistics
 • Survey data
• College Scorecard
 • Performance data
• 122 data elements
• 7800+ schools
Meet the data

2017 “Cooperate and Navigate”
- Effects of introducing self-driving cars
- State of Washington
 - I-5, I-90, I-405, SR520
- Model effects, propose policies
- Dedicated lanes, percentage of self-driving cars, peak vs normal hours, interactions

DATA
- 4 roads
- Average cars per day driving on road
- Data available for each milepost on the road
 - 224 mileposts
- Number of lanes (at each milepost)
 - Number of lanes in “increasing direction”
Meet the data

2018 “Energy Production”
• 4 states: AZ, CA, NM, TX
• Develop energy profile for each state, model the profile over time
• Determine the “best profile” (renewable energy)
• Predictions and targets for each state – actions to meet goals

DATA
• 50 years
• 605 variables
• Energy production and consumption
Meet the data

2019 “The Opioid Crisis”
- Spread and characteristics of synthetic opioids/heroin
 - Patterns, concerns, thresholds, origins
- Socioeconomic factors
- Develop and test strategy
- 5 states (OH, PA, KY, VA, TN)

DATA
- County level data – 462 counties
- 2010 – 2017
- 69 drugs, total cases
- Socioeconomic data (census) by year
 - 150+ variables
- Not provided (but allowed)
 - Map data: coordinates/distances
Data Specific Challenges

• Exploratory Data Analysis (EDA)
 “Data Wrangling”
 • Data processing
 • Data cleaning
 • Data visualization
Data Processing and Cleaning

• Handling data types
 • Text – State
 • Numerical two categories (binary) – HBCU
 • Numerical many categories – LOCALE (large city, fringe suburb etc)
 • Numerical and continuous/discrete – SATV, PCIP

Goodgrant Challenge Example

<table>
<thead>
<tr>
<th>STABBR</th>
<th>NPCURL</th>
<th>HCM2</th>
<th>PREDEEG</th>
<th>LOCALE</th>
<th>HBCU</th>
<th>SATVR25</th>
<th>PCIP11</th>
<th>GRAD_DEBT_MDN_SUPP</th>
<th>ACTCM25</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>galileo.aamu.edu/netpricecalculator/npc</td>
<td>0</td>
<td>3</td>
<td>12</td>
<td>1</td>
<td>370</td>
<td>0.0348</td>
<td>33611.5</td>
<td>15</td>
</tr>
<tr>
<td>AL</td>
<td>www.collegeportraits.org/AL/UAB/esti</td>
<td>0</td>
<td>3</td>
<td>12</td>
<td>0</td>
<td>520</td>
<td>0.0099</td>
<td>23117</td>
<td>22</td>
</tr>
<tr>
<td>AL</td>
<td>tcc.noellelitz.com/ISS(miiohsSstz5cpyi</td>
<td>0</td>
<td>3</td>
<td>12</td>
<td>0</td>
<td>NULL</td>
<td>0.0411</td>
<td>24738</td>
<td>NULL</td>
</tr>
<tr>
<td>AL</td>
<td>finaid.uah.edu/</td>
<td>0</td>
<td>3</td>
<td>12</td>
<td>0</td>
<td>510</td>
<td>0.0273</td>
<td>18400</td>
<td>23</td>
</tr>
</tbody>
</table>

• Scales (PCIP – percentage of degrees in computer science vs Grad Debt)
 • Standardization may be required

• Different indicators of missing (some years many!)
 • Some “missing” data actually tells us something
Data Processing and Cleaning

• Outliers and unusual observations
 • Identification (visualizations etc)
 • Could be legitimate and important data...
 • Could be legitimate but not important (ex: not a value we care to predict)...
 • Could be bad data

“Goodgrant Challenge” Example
Schools with negative average tuition

Opioid Crisis Example
Shift in census designations in 2013

Great “catches”
Most teams did not notice these issues!
Advanced Data Processing and Cleaning

- **Highly correlated data**
 - May cause issues in some models (multicollinearity)
 - "Redundant"
 - Some teams handled with PCA or other dimension reduction approach (not always intentionally)

```
"Goodgrant Challenge"
Examples

- SAT scores – Pearson correlations > 0.9
```

- **Highly skewed data**
 - "Zero-variance" variables
 - "Zero inflated" variables
 - Often hurts model building, model assumptions
 - Very few teams recognize and intentionally address

```
<table>
<thead>
<tr>
<th>TRIBAL</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>7349</td>
<td>34</td>
</tr>
<tr>
<td>Percent</td>
<td>99.5%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>
```

- **Percent of degrees awarded in agriculture**
 - 87.5% zero values
 - Non-zero boxplot

```
Percent of degrees awarded in agriculture
```
Dimension Reduction Methods

- **Principal Components Analysis (PCA)**
 - Create a smaller set of “components” that accounts for a high percentage of variability in data
 - Components are linear combinations of original variables
 - Eigenvectors corresponding to largest eigenvalues

 Goodgrant Challenge: school performance measures
 Opioid Crisis: socioeconomic factors

 • Identification of PC’s (how many to use)
 • Interpretation (not always easy, not always done properly!)

- **Cluster Analysis**
 - n observations each a d-dimensional vector of values
 - Choose k sets of observations (clusters) to minimize the distances of points from the center of their cluster

 Goodgrant Challenge: groups of similar schools
 Opioid Crisis: groups of counties

 • Choice of k
 • Are observations in clusters really similar
Handling Missing Data

• Exclude variable or observation
• Simple imputation
 • Example: missing drug count data (opioid data) impute a 0
 • Replace with the an average (mean, median) value
• Use of regression models
 • Built with other variables as predictors
• Multiple Imputation (MI)

1. Missing data are filled in \(n \) times, generating \(n \) complete data sets.
2. Each complete data set is analyzed using a statistical procedure.
3. The results of the analysis from each of the \(n \) complete data sets are combined for the statistical inference.

• Decision on how to treat matters (example: 0 means something)

• Missingness mechanism matters
 • MCAR (Missing Completely at Random) – simple may be ok
 • MAR (Missing at Random) – missingness related to observed data – use regression or MI
 • MNAR (Missing Not at Random) – missing data itself related to why missing – danger in imputation
Data Visualization

- Standard methods: trendlines, scatterplots, histograms, boxplots, etc.
- Many very cool plots (radial, heat map, etc)
- Useful at all stages of the modeling!

EXPLORING DATA

- Find missing data issues
- Actual vs predicted

PRESENTING RESULTS

Model results of opioid spread

Raw data (drug reports)
A VERY wide variety in most years! A few examples...

2016 “The Goodgrant Challenge”
- Analytic Hierarchy Process (AHP)
- LASSO
- Bayes
- PCA
- Linear regression
- Cluster analysis

2017 “Cooperate and Navigate”
- Cellular Automata
- Fluid flow (differential equations)

2018 “Energy Production”
- Neural Nets
- Entropy
- ARIMA
- TOPSIS
- Correlation/regression
- AHP/PCA

2019 “The Opioid Crisis”
- Time series models (Gray, ARIMA)
- SIR (differential/difference equations)
- Markov simulations
- Support Vector Machines (SVM)
- Regression/ANOVA
- CART and Random Forests

Usually more than one technique
- Submodels
- Parts of problem

Less variety this year – CA by far most common!

HUGE variety these years – others too!
"Goodgrant Challenge" Example*
* Tsinghua University, China. Title: An Optimal Strategy of Donation for Educational Purpose. 2016 MCM entry.

- A “performance index” (PI) developed to measure school effectiveness
 - Use PCA – a weighted average of several metrics
- Want a model to determine which of 108 indicators best predict the PI

“Penalized” Linear Regression Model

- Coefficients of predictors minimize:
 \[\min_{\beta} \frac{1}{n} \sum_{i} (y_i - x_i^T \beta)^2 + \lambda \| \beta \| . \]

- Idea: avoid overfitting by adding penalty for large coefficients
- Shrinkage parameter, \(\lambda \), selected to minimize Mean Square Error (MSE) for predictions in cross validation
 - 10—fold CV: hold out a different 10% of sample each time
 - Use model based on 90% to predict the hold out sample
- Determined an optimal shrinkage at \(\lambda = 0.6 \)
- 5 predictors with non-zero coefficients
 - Example negative coefficient for student to faculty ratio – makes sense!
Cellular Automata (CA)

- Discrete time simulation
- Grid of simple elements (cells)
 - Assume one of two states
- At each step retain current state or transition based on a set of rules
- Rules based on cell and neighboring cell information
- "Cooperate and Navigate” most used
 - also popular in "Opioid Crisis"

"Cooperate and Navigate” Example

Cell definitions/attributes
- Lengths of road/lane
- Occupied or not
- Type of car (SD or not)
- Car characteristics at time: velocity, acceleration, turn signal etc.

Vehicle generation
- Constant arrivals
- Using data provided (few teams did this!)
- Poisson arrivals
- Example shown: bimodal Gaussian (peak and non-peak arrival rates - resulting probabilities for number cars per second)
Cellular Automata (CA)

"Cooperate and Navigate" Examples of Rules

"Following Rules"
- Accelerate/decelerate probabilities
- Distance of car ahead
- Other safety indicators
 - Ex: brake lights

"Lane Change Rules"

"Highway Interchange Rules"
- Very few teams attempted

SELF DRIVING CARS
different parameters
and rules
"Opioid Crisis" Example*

Predictors (socioeconomic factors) of total opioid reports

1. Determine each factor’s best “split” for the data in a given “leaf” (node) of “tree”.
2. Pick the factor giving the best split.
3. Split the data in the given leaf/node based on the chosen factor and split point.
 - If no stopping rules are met
4. Use the mean drug reports within each created leaf as the predicted value for counties in that leaf.

Iterate until no further splits possible

CART considerations

- Criteria to measure predictive accuracy/determine optimal splits
 - Team used Mean Squared Error (MSE)
- Tuning parameters related to tree “depth”
 - Number of observations in leaf or depth
- OVERFITTING concern – “prune” tree

Factors in tree

- MARITAL STATUS
- EDUCATIONAL ATTAINMENT
- HOUSEHOLDS BY TYPE
- DISABILITY STATUS
- SCHOOL ENROLLMENT
- GRANDPARENTS RELATIONSHIPS IN HOUSEHOLD
- RESIDENCE 1 YEAR AGO
- VETERAN STATUS
- FERTILITY
- YEAR OF ENTRY

* Sichuan University, China. Title: Opioid Use Profile and Recommended Strategies in 5 States. 2019 MCM entry.
"Opioid Crisis" Example*

Build m trees and average for prediction

To build each tree:

1. Generate a bootstrap sample of original data
2. Create a tree for this sample
 • For each split randomly select k predictors
 • Select best of the k to make split
3. Build complete tree (without pruning) with typical stopping criteria

TOP 10 most important socioeconomic factors using RF

- total illicit drug use rate
- people born in the US
- Irish ancestry
- some college but no degree
- Polish ancestry
- total population
- American ancestry
- only English spoken at home
- high school graduation rate
- graduate or professional degree.

RF considerations

- Tuning parameters number of trees (m) and predictors for possible splits (k)
 • Various measures and methods to optimally choose
- Idea is to create uncorrelated trees
- OVERFITTING not a concern
- Methods to identify most important predictors
 • Exact nature of relationships not clear – hard to interpret model

Sensitivity analysis and model validation

Approaches may differ from typical MCM problems

• Tests/measures of uncertainty
 • Confidence intervals, statistical tests

• Measures of model predictive performance
 • R^2, RMSE, sensitivity/specificity, ROC curves

• Statistical models goodness-of-fit
 • Residual analysis

• Methods of finding optimal tuning parameters
 • Cross-validation

• Simulation methods (CA) typically use sensitivity analysis of key parameters

• Generally, should involve model and DATA
 • Often not done or done poorly!

Example: "Opioid Crisis" CA model for spread*

• 2 parameters (k - # of counties considered “neighbors”, m – “environment” of county)
• Examine RMSE of predicting opioid counts

“Statisticians are working thru the night processing numbers after an explosion of data in biotechnology has trapped a dozen data miners.”

QUESTIONS?