COMAP'S EXPLORING MATH MODELING IN AND OUTSIDE OF THE CLASSROOM WEBINAR SERIES

Webinar #2 Modeling with Context: Authentic Problems to Foster a Modeling Mindset

Greta Mills

Oxbridge Academy Gmills@oapb.org



@mathteacher671 @COMAPMATH

# GOALS

- Introduce the Modeling Process
- We All Have Problems!
  - Getting Started: Modeling Resources Contests
  - Student Voice and Choice
  - Identifying local problems
    - Parking Lots
    - Lunch Lines
  - Developing a Modeling Mindset Introductory Steps
    - Indirect Measurement Activities
- Additional Resources







# **Getting Started**

#### MODELING COMPETITIONS

- CoMAP <u>www.comap.com</u>
  - High School Mathematical Contest in Modeling (HiMCM)
     First contest in 1999
  - Mathematical Contest in Modeling (MCM)
  - Interdisciplinary Contest in Modeling (ICM)

#### SIAM

#### https://m3challenge.siam.org/

- Mathworks Math Modeling Challenge (M3 Challenge)
   First contest in 2006
- COYAD





# Student Voice and Choice

- · Modeling empowers students to make real decisions
- Modeling gives each student the opportunity to participate according to their strengths
- Modeling engages all students by offering problems that are of genuine interest and / or concern to students
- Modeling validates student efforts by ensuring that there is an authentic audience ("client")
- · Modeling provides context for math and its applications



## We All Have problems!

#### Problem: Parking Lot Design

- High school wishes to redesign school parking lot
- Opportunity to have input
- What is an "optimal" design what are we trying to optimize? Number of available spaces? Traffic flow?
- Other considerations:
  - Bus traffic
  - Handicapped parking
  - Lighting
  - Snow Removal





# Types of Parking Spaces





COMP



# Accessibility Requirements (NH)

| TOTAL PARKING<br>SPACES PROVIDED | REQUIRED MINIMUM NUMBER OF<br>ACCESSIBLE SPACES |
|----------------------------------|-------------------------------------------------|
| 1 to 25                          | 1                                               |
| 26 to 50                         | 2                                               |
| 51 to 75                         | 3                                               |
| 76 to 100                        | 4                                               |
| 101 to 150                       | 5                                               |
| 151 to 200                       | 6                                               |
| 201 to 300                       | 7                                               |
| 301 to 400                       | 8                                               |
| 401 to 500                       | 9                                               |
| 501 to 1,000                     | 2% of total                                     |
| More than 1,000                  | 20 plus one for each 100 over 1,00              |

- The amount of accessible parking spaces that must be provided is based on the total number of spaces in each parking lot.
- At least one parking space must be van-accessible, and for every 6 (six) accessible parking spaces, there must be one van-accessible space.

## Results

 This was the first opportunity that students had to make real choices in how to solve a problem. While many found it intimidating at first, the students were energized by having the opportunity to present their solution to the School Board









# If I had to do it all over again...







# We All Have Problems!



- Problem: Lunch Lines
- Newly opened cafeteria (2015)
- Long lunch lines
- Some students skip lunch

## Restatement of the Problem

#### Problem:

The amount of time it takes to have lunch, from entering the queue to being served, discourages students from going to the cafeteria and eating the provided lunch.

#### Goal:

To analyze data and determine the factors that hinder the flow of the service queue.

To find a method of making the lunch experience at Oxbridge more efficient and enjoyable.





### Definitions

- Service Queue: Line before service center
- Service Center: Food/service counters
- Oven: The process of receiving service
- Cook Time: The time it takes to receive service
- Line 1: Closest to outside door
- Line 2: In far corner next to kitchen
- Line 3: Closest to inside door
- **Transfer Time (conveyor):** Time it takes to travel from any exit to any line





# Assumptions

- There is no cutting.
- An individual will choose the line that has the least number of people.
- Lunch is served before 11:20 to people who are in the cafeteria.
- Not every person at Oxbridge eats lunch.
- The line will eventually diminish.
- People will only get one plate of food at a time.
- People will get seconds at random times (usually during the second half of lunch), so they will get back in line.
- The second half of lunch is negligible.
  Salad Bar and Drink Tables do not have an impact on the lunch lines.
- Many students do not eat lunch because of the length of the lines.





## Data Collection



# Data – Transfer Time

| Exit→ Line                        | Transfer Time<br>(seconds) |
|-----------------------------------|----------------------------|
| Outdoor Exit $\rightarrow$ Line 1 | 5                          |
| Outdoor Exit $\rightarrow$ Line 2 | 22                         |
| Outdoor Exit $\rightarrow$ Line 3 | 27                         |
| Indoor Exit $\rightarrow$ Line 1  | 27                         |
| Indoor Exit $\rightarrow$ Line 2  | 34                         |
| Indoor Exit $\rightarrow$ Line 3  | 9                          |

\*\*\*Average Walking Speed Used: 4.16 feet/second







# 2019 update





# 2020 update? Students eat in their classroom Three lunch stations set up throughout both buildings How to get all students / staff through the lunch line while maintaining social distance in the hallways Sadly, the math class was not asked to design a solution...

# Student perspectives

- "Everything is applicable. Everything. There was not one thing we did in this class that could not be taken and used in real life."
- "The projects were so much fun and relevant to problems in society, which made them really interesting!"
- COMP

- " I loved the hands on aspect of it, and the fact that it went where it went. I also liked that we worked with Oxbridge problems."
- "The projects were interesting and you actually saw how math was used in the real world. It also taught me how to write reports and executive summaries."

# Developing a Modeling Mindset

- Teachers who are interested in incorporating modeling into their classroom can start with smaller, more accessible activities
- Smaller, "bite-sized" activities can be a great way to introduce students to modeling
- Less intimidating than a full project
- Build student curiosity



## Developing a Modeling Mindset

#### Mini-models: Indirect measurement





What size should this flag be?

How far was the photographer from this bridge?



How tall is that swing?

# Additional Resources

MATH Models http://www.mathmodels.org/

**MATHm@dels.org** 

Math Modeling Hub https://qubeshub.org/community/groups/ mmhub







# Questions, Comments, Discussion

## Greta Mills

Gmills@oapb.org @mathteacher671



