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Suppose that you have a large
population you wish to test for a
certain characteristic in their

blood or urine (for example, testing all
NCAA athletes for steroid use or all 
US military personnel for a particular
disease). Each test will be either
positive or negative. In this problem,
we are assuming that there are no false
positive or false negative tests. Since
the number of individuals to be tested
is quite large, we can expect that the
cost of testing will also be large. How
can we reduce the number of tests
needed and thereby reduce the costs? 

The number of tests might be reduced
if the urine could be pooled by putting
a number of samples together and then
testing the pooled sample. Suppose we
pool 10 samples together and then test
this pooled sample. If the test on the
pooled sample is negative, then we
know that all 10 individuals in the
pooled sample must be negative, and
we have checked 10 people with only
one test. If, however, the pooled
sample tests positive, we know only
that at least 1 of the individuals in the
sample will test positive. It could be
only 1 or all 10 that are positive and we
have essentially “wasted” a test (and
the money that paid for the test).

The larger the group size for the
pooled test, the more we can eliminate
with a single test, but the more likely
the group is to test positive. Would
pooling 5 samples at a time be better
than pooling 10 samples at a time? At
what point would pooling not be
advisable? Certainly, we anticipate that
the larger the probability of an
individual testing positive the smaller
the group size, while the smaller the
probability, the larger the group size
required. What is the relationship
between the probability of an
individual testing positive and the
group size that minimizes the total
number of tests required?

In this article, we will look at several
versions of this classic problem and
find solutions using basic algebra,
precalculus and data analysis, and
calculus. In all versions, we are trying
to minimize the expected number of
tests performed.

Two Person Problem for Algebra II

The Mathematics: Modeling Our World text
series has a very nice introduction to this
problem in Course 1. Here, the question
is the simplest form of the problem. With
just two people to test, does it take fewer
total tests if the two samples are pooled
and tested together first?

Let p represent the probability of a
single sample testing positive. So the
probability of a single sample testing
negative is 1 – p. To determine the
expected number of tests, we need to
consider the four possibilities for the
two-person sample.

• They are both positive. This happens
with probability P(+ +) = p2.

• They are both negative. This
happens with probability 
P(– –) = (1 – p)2.

• The first is positive and the second
negative. This happens with
probability P(+ –) = p(1 – p).

• The first is negative and the second
positive. This happens with
probability P(– +) = (1 – p)p.

The Expected Number of Tests

Depending on the situation, it could
take 1, 2, or 3 tests to determine the
sign (+ or –) of the individual samples.

• If both individual samples are
negative, then only 1 test of the
pooled samples is required.

• If both individual samples are
positive, then 3 tests would be
required. The initial pooled test

would indicate that at least one
sample is positive. We would then
need to test the first sample
separately. This would produce a
positive result, which would give us
no information about the second
sample. The second sample would
need to be tested to find that both
were positive. 

• If the first sample is positive and the
second negative, the pooled test
would be positive. The first
individual test would also be
positive and the last test would be
negative. So 3 tests would be needed
in this case also.

• If the first sample is negative and the
second positive, the pooled test
would be positive. The first
individual test would also be
negative. Since the pooled sample
was positive and the first individual
sample negative, the second sample
must be positive. So only 2 tests
would be required in this case. 

The expected number of tests is T = 1 ·
(1 – p)2 + 2 · (1 – p)p + 3 · p(1 – p) + 3 ·
p2. This simplifies to T(p) = 1 + 3p – p2.
We can use this equation to determine
when it is to our advantage to pool the
samples. Without pooling, exactly 2
tests are always needed. For what
probabilities is the expected number 
of tests from pooling less than 2 (see
Figure 1)?

FIGURE 1: EXPECTED NUMBER OF TESTS AS

A FUNCTION OF P.

Solving 1 + 3p – p2 = 2, we find that
pooling should be used only when 
p < 0.382. 
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One difficulty with this approach is
that the analysis is difficult to
generalize to more than 2 people.
Suppose we had 4 or 8 samples.
Considering all of the possible
combinations quickly becomes
overwhelming. To get around this
problem, we can make a simplifying
assumption. That is, if the original
group tests positive, we will test each
of the individual specimens separately.
This will give us a “worst case”
solution, since, on occasion, we would
not need to perform the test on the last
member of the group. However, the
solution will be much easier to find and
will be close to what we would get
using the more cumbersome procedure.

Worse Case 2-person Problem

Our worse case analysis assumes that
for 2 people we would use either 1 or 3
tests. If both individual samples are
negative, then only 1 test of the pooled
samples is required. This happens, as
before, with probability (1 – p)2. In all
other cases (probability 1 – (1 – p)2), a
total of 3 tests will be used. The
expected number of tests will be 
t(p) = 1 · (1 – p)2 + 3 · (1 – (1 – p)2) = 
1 + 4p – 2p2 (see Figure 2).

With this modification, pooling the two
samples would be advantageous
whenever p < 0.293. We can compare
the two expected value functions by
considering the difference, D(p) = t(p) –
T(p) = (–2p2 + 4p + 1) – (–p2 + 3p + 1) =
–p2 + p. The difference is a quadratic
function whose vertex is (0.5, 0.25). We
see that the biggest difference occurs
when p = 0.5 and at that value the two
models differ by only 0.25 tests.
Therefore, our worse case solution for
the 2-person problem is a very
reasonable approximation for the
precise method.

In the more advanced formulations of
the pooled testing problem, we will
use this worse case model, in which, if
a pooled test of G individuals is

positive, all of the individuals in the
pooled sample will be tested
separately. So we will either use 1 test
or G + 1 tests for the G individuals.

Precalculus Solution 
Using Data Analysis

Precalculus students can handle a
more sophisticated (and useful) form
of the problem. In this case we will
look for a general solution and apply
that solution to determine the number
of tests needed to find 100 positive
individuals in a population of
1,000,000. 

Problem Statement

You have a large population (N) that
you wish to test for a certain
characteristic in their blood. Each test
will be either positive or negative.
Since the number of individuals to be
tested is quite large, you wish to
reduce the number of tests needed to
screen everyone and thereby reduce
the costs. If the blood could be pooled
by putting G samples together and
then testing the pooled sample, the
number of tests required might be
reduced. What is the relationship
between the probability of an
individual testing positive (p) and the
group size (G) that minimizes the total
number of tests required? Use your
solution to determine the number of
tests required to find 100 individuals
who will test positive in a population
of 1,000,000. 

The Basic Model

An essential aspect to developing any
model is to consider the simplest case
that embodies the essence of the
problem. For the general pooled
testing problem, this is a solution that
uses only one pooled test, and then
tests everyone remaining individually.
If the students cannot solve this
problem, they will not be able to solve
a more involved model that is perhaps
more realistic. Further, the solution to
the simplest situation often is helpful
in arriving at a more general solution.
In this model we make a second worse
case assumption. If a pooled group
tests positive, then there is only 1
individual in the group who is
positive. Having only 1 person in the
group who is positive will result in the
maximum number of tests being
required. We want to make this
maximum number of tests required 
as small as possible

Expected Number of Tests

Since there are N people to be tested in
groups of size G, the initial number of
tests needed to test these groups is .
The probability of an individual
testing positive is p, so there are Np
people who will test positive. With the
worse case assumption that exactly 1
person in each group will test positive,
this means that Np of the groups will
test positive. Since there are G
individuals in each of these groups,
there will be NpG people needing to 
be re-tested. If we do each of these
separately, then the number of tests
needed for this testing protocol is
given by 

T = + NpG = N( + pG).

Precalculus students know that the
factor N produces a vertical stretch in
the graph of T, so the value of G that
minimizes the number of tests will not
be affected by N. To simplify our work,
we can set N = 1 for convenience. The 
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t(p) = –2 · p2 + 4 · p + 1
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T(p) = –p2 + 3 · p + 1

FIGURE 2: COMPARING THE TWO MODELS
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value of G that minimizes T = + pG

will also minimize T = + NpG.

Using Data Analysis 
to Find a Function

For a specific value of p, we can
determine the group size G that
minimizes the number of tests, T, and
therefore the costs, by using a
graphing calculator. For example, if we
let p = 0.25, we can graph the function
T(G) = + 0.25G and “zoom and 
trace” or use the “min” key to find that
G = 2 gives the minimum value of T. If
we let p = 0.01, we can repeat the
process and find the value of G that 
minimizes T(G) = + 0.01G is G = 10. 
(See Figure 3)

By repeating this process for different
values of p, we generate Table 1:

1
G

1
G

N
G

1
G

The data in this table are ordered pairs
that lie on the function describing the
relationship between the value of p
and the best choice for G. This is the
function that will answer our question.
By using techniques of data analysis on
the scatterplot for this data, we can
create a model relating the best group
size G to the probability p. The
scatterplot is shown in Figure 4.
Precalculus students should notice that
there appears to be both a vertical
asymptote at p = 0 and a horizontal
asymptote at G = 0. This suggests some
form of a reciprocal function might
make a good model, so a power or log-
log re-expression would be appropriate.

By re-expressing the data with a 
log-log plot, we linearize the data
(see Figure 5).

Since the log-log re-expression
linearized the data, we know that the
power function model is appropriate.
The least-squares line for the re-
expressed data is ln(G) = 0.00005 – 0.5
ln(p). Solving for G, we find that 

G = is the solution to our problem. 
The group size that will minimize the 

total number of tests is G = . In our 
example with 100 individuals testing
positive in a population of 1,000,000, 
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FIGURE 5: LOG-LOG RE-EXPRESSION TO LINEARIZE DATA

p 0.25 0.20 0.15 0.10 0.05 0.03 0.01 0.005 0.001 0.0005 0.0001

G 2.0 2.24 2.58 3.16 4.47 5.77 10.0 14.14 31.62 44.72 100.0

TABLE 1: BEST G FOR VARIOUS VALUES OF P
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p = 0.0001, so G = . We should 
put 100 samples together and test them
all together. 

If G = , the total number of tests 

needed is 

T = N = N = 2N .

In our example, 100 individuals testing
positive can be found in a population
of one million people in approximately
20,000 tests. Remember, this is the
worse case. It would never take more
than 20,000 tests, and would probably
take fewer.

To find the value of p when it would
not be useful to pool samples, we solve 
2N ≥ N, and find that p ≥ . If p ≥ , 
then it takes more total tests when
pooling than if we just tested everyone
individually initially from the start. 

Improving the Solution

One essential aspect of modeling is the
importance of taking your first
solution and refining and improving it.
In our first model, we retested
everyone individually. There is no
reason to retest everyone individually.
We could retest all of the NpG needing
to be retested after the first group test
in similar groups. We already know 

that G = is the optimum group size. 
However, since we have already
eliminated a large number of people in
the first phase of testing, the value of p
will be much larger for the second
group test. To determine the new value
of p to use to find G, we need to think
carefully about the situation.

There are Np people that we expect to
test positive and NpG people
remaining to be retested after the first
group tests. The probability of testing
positive in the second round is 
p* = = = . So the next test 

should be done with G = = . 

Continuing in this fashion, we find the
group sizes to be 

First Grouping

New Probability

Second Grouping

New Probability

Third Grouping

New Probability

nth Grouping

New Probability

We know we should stop grouping
when the new probability is greater
than 0.25. We want to know for what n
is ≥ . Solving for n, we find that 

n = ln .

If p = 0.0001, then n ≈ 3, and 3 rounds
of pooled tests are needed. How small
must p be before 4 rounds are needed?

The model just created works very
well, reducing the number of tests
dramatically.

In this example of finding 100 positive
individuals in a population of
1,000,000, testing in groups of 100, 10,
and 3, and then testing everyone 

remaining individually requires only
10,000 + 1000 + 334 + 300 = 11,634 tests
(see Table 2). If each test costs $10, then
we have saved $9,883,660 over testing
individually, and $83,660 over our
initial model, which tested in groups
only once.

Calculus Solution

In calculus we create the model as in
the precalculus version, so the number
of tests needed for the testing protocol
of 1 group test followed by individual
tests is given by 

T(G) = + NpG.

Once students have this function, it is a
straightforward optimization problem.
To determine the best group size G, we
differentiate with respect to G,
recalling that N and p are parameters.
So = – + Np. If = 0, then 

G = . What took a lot of effort with 
data analysis can be done simply with
the power of calculus.

From here the solution is the same as
that of the extension to the precalculus
model. However, our solution is
clearly not an optimal solution. In
creating the model, we assumed that
we would group only once and then
retest individually. The group size 

G = was determined on the basis of 
that assumption. However, instead of
testing individually, we regrouped and
tested in groups, but the model did not
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acknowledge our regrouping. Is it
possible to determine the number of
tests needed by taking the additional
pooled group tests into account from
the beginning? A second model
extends this initial solution.

The Multiple Group, Iterated Model

As with the initial solution, the starting
point is with the simplest model that
contains the essence of the problem. In
this case, it is a model that allows for
two group tests and then testing
everyone remaining individually. We
test first with groups of size G1, then
group those needing retesting in
groups of size G2. So our initial model
allowing for regrouping is 

T(G1, G2) = + + NpG2.

It seems that T is a function of two
variables, G1 and G2, which is beyond
the scope of an introductory course in
calculus. Is it possible to rewrite this as
a single variable problem? With some
encouragement, students will realize
that they already know the solution to
the last part of the problem (for G2), 

T = + + NpG2 ,

because this is the problem of
minimizing the number of tests with
one test and then testing everyone
remaining individually. So, in 

fact, we know G2 = , where p* is the 
probability of testing positive after the
first test. But p* is just the expected
number testing positive divided by the
total number in the present population. 

So p* = = . Substituting, we 

find that G2 = . The total number of
tests can now be written as a function
of the single variable G1. So,

T(G1) = + 2Np .

This is now another standard calculus 

problem. We know that = + 
and elementary calculus shows that

the optimum value for G1 is G1 = p–2/3.
So, if two groupings are used, the sizes
of the groups should be G1 = p–2/3 and
G2 = p–1/3. Extending the grouping to
three continues the pattern. If 

T = + + + NpG3,

and we know the solution to the last
two group sizes,

T = + + + NpG3 ,

are G2 = (p*)–2/3 and G3 = (p*)–1/3 with 

p* = . Then G2 = G1
2/3 and 

G3 = G1
1/3. Rewriting, we find that 

T(G1) = + 3NpG1
1/3.

Again, elementary calculus shows 
that the optimum group sizes are 
G1 = p–3/4, G2 = p–1/2, and G3 = p–1/4.
Repeating the analysis with four
groups generates the optimum group
sizes G1 = p–4/5, G2 = p–3/5, G3 = p–2/5,
and G4 = p–1/5.

We used 3 regroupings in the earlier
solution (see Table 3).

Using 3 regroupings in this situation
requires only 4000 total tests, and since
the latest probability is less than 0.25,
we know we could have done even
better with 4 regroupings.

The General Solution

From our work above we see that if a
total of n groupings are used, the
group sizes are given by 

G1 = p

G2 = p

G3 = p

Gn = p ,

with the kth group of size Gk = p .
The total number of tests required with
n groupings is

T = + .

This result can be proven by induction,
but is generally beyond what most
students would be expected to do.

What number of groupings n is
optimum for a given initial probability
p? If we consider T as a function of n,
we find that

T(n) = N (1 + n).

Differentiating, we find that 

= N . 

Solving = 0 for n we find the 
optimal number of groupings is 
n = –ln(p) – 1. For our example, this is 
n = –ln(0.0001) – 1 ≈ 8 groupings of
pooled tests. The total number of tests
required is given by 

T = Npe(–ln(p)).

If p = 0.0001 as in our example, this is a
reduction by a factor of 400. If 100 out 
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of 1,000,000 had the sought for
characteristic, they could be found in
around 2500 tests (and, remember, this
is the worse case)!

With this value of n, we can also
determine the optimum size of the kth 

group. We know that Gk = p , with
n = –ln(p) – 1, so the kth group size
should be 

Gk = p . 

This expression for the group size for
the kth regrouping can be simplified. If 

Gk = p , then ln(GK) = ln = 

ln(p) = –ln(p) – k. 

Solving again for Gk, we find Gk = . 

Students are always surprised to see e
show up in the solution. Of course,
while this theoretical result is pleasing, 
it may not be realizable, since Gk = 
may be too many specimens to handle
in a single group.

Final Comments

This problem offers an important
teaching point about mathematical
modeling. The importance of iterating
the model and refining the solution
based on prior work is clear and
convincing in this setting. In each
approach (using algebra, precalculus,
and calculus), we found an initial
solution then modified that solution to
improve it. This iterative approach is
essential to good modeling. In the
precalculus solution, we improved the
initial solution by violating the
assumptions of that solution! We could
never do this with a problem in
mathematical theory. This creates an
interesting discussion about
mathematical theory and mathematical
practice, and the importance of a good
approximate solution over an ideal
unrealizable one. Also, the importance
of considering “What question does
this new solution ask?” is seen in
several places. We obtain a solution to
one question and immediately use it to
answer another. The conversations
surrounding the solution and in the
process of solving this problem
encourage essential aspects of
modeling. ❏
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